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Single-loop divergences in six dimensions 

J S Dowker 
Department of Theoretical Physics, University of Manchester, Manchester M13 9PL, UK 

Received 14 February 1977 

Abstract. The leading divergences of single-loop scalar and vector effective Lagrangians in a 
six-dimensional Ricci-flat Riemannian space are evaluated. 

Van Nieuwenhuizen and Wu (1977) have recently discussed the leading divergences of 
pure Einstein quantum gravitation. They considered the general structure of these 
divergences at the two-loop level in four dimensions and at the one-loop level in six 
dimensions. 

It is not without interest to investigate the same questions for the simpler cases of 
quantum fields of spins zero and one propagating in a background metric. In particular 
the one-loop divergences in six dimensions can be explicitly evaluated without very 
much work and this is what I wish to do here, if only to draw attention to a considerable 
body of interesting and valuable work performed by mathematicians over the past few 
years. 

Van Nieuwenhuizen and Wu use the general ideas of dimensional regularization but 
this is not important. I shall use what I have termed zeta-function regularization 
(Dowker and Critchley 1976). 

It is shown in the last reference that the singularity in the effective action due to a 
loop of a scalar particle is of the form 

1 Wzle = -ti lim [(o, m 2, - 
v + l  V - 1  

where ((v, m2)  is the space-time integrated zeta function on the manifold in question. 
In general ((0, m2) is given, in d (even) dimensions by 

where the a, are the standard coincidence limits in the Fock-Schwinger-De Witt 
proper-time expansion. (Mathematicians sometimes call these the Minakshisundaram 
coefficients.) 

Simply in order to compare with dimensional regularization, note that o ( = half the 
complex dimension) = i d  - v + 1, so we have 

This is the complete, formal answer with the a, given in terms of the curvature. 
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However, only ao( = l), al ,  az and a3 have been evaluated so far. Historically a1 and 
a2 were first derived by De Witt in 1963 (De Witt 1965). Berger (1966) later re-derived 
al ,  while McKean and Singer (1967) are usually credited by the mathematicians with 
the evaluation of az. The explicit formula for a3 is due to the work of Sakai (1971). 
These calculations have been tidied up and extended by Gilkey (1973, 1975a,b). The 
work on Donnelly (1974, 1975) and Patodi (1970, 1971) must also be mentioned. 

Gilkey's theory gives the coefficients for an arbitrary second-rank differential 
operator, in particular for the covariant Laplacian, and for any vector bundle in the 
tangent space. For four dimensions his formulae, taken together with equation (3), 
constitute an extension and a more elegant derivation of the 'algorithm' of 't Hooft and 
Veltman (1974). 

I now restrict the discussion to the massless case so that (3) becomes 

J ad/Z 
1 

W':,,(d, massless scalar) = - - - 
( 4 ~ ) ~ "  2w - d  (4) 

and only f.242 is required. Thus the available expressions for a, mean that we can 
investigate the six-dimensional case. 

According to the results of Sakai, Gilkey and Donnelly, referred to above, the 
integrated u3 is, in a Ricci-flat space (as discussed by van Nieuwenhuizen and Wu) 

where 

IVR (* = RFvpa~~aRFvPO"ol 

X = RrrvpaRwaBRa6Fv = -Al 
y = R F V A  Fap@R a 6=A2*  

Green's theorem gives the integral relation 

and there are the topological results 

where ,y (M) is the Euler-PoincarC characteristic for the space-time, M. These relations 
lead to 

which gives an explicit form for the pole term (4) in six dimensions. 
The 'photon' can be treated in a similar fashion. If Maxwell theory is extended to d 

dimensions in the most 'natural' way, i.e. by letting the indices range over d values, then 
equation (4) is modified by replacing ad/Z by 

Tr ad/2(V> 2ad/2(S) 
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where ad12(V) and ad,&) are the coefficients for the vector and scalar fields respec- 
tively. The (minimal) scalar contribution is a ghost effect. 

If the formulae of Gilkey (1975b) are employed I find that, in the Ricci-flat case, 

373 172 
Tr a3(V) = -- J 12600 

and for the total pole numerator, 

577 104 (Tra3(V)-2a3(S))= -- 
18720 

Interesting information on the structure of compact Ricci-flat manifolds can be found in 
the work of Fischer and Wolf (1975). 

Since this calculation is somewhat academic in six dimensions I have not bothered to 
work out the pole term for an arbitrary Riemannian space-time although the evaluation 
is perfectly straightforward. Instead the method is being extended to pure gravitation so 
that the coefficient (Y6 of van Nieuwenhuizen and Wu (1977) can be determined 
analytically. 

References 
Berger M 1966 C.R. Acad. Sci., Paris 263 13 
De Witt B S 1965 Dynamical Theory of Groups and Fields (New York: Gordon and Breach) 
Donnelly H 1974 Indiana Unio. Math. J. 24 603 
- 1975 Proc. Symp. Pure Math. vol. 27 (Providence, RI: American Mathematical Society) p 195 
Dowker J S and Critchley R 1976 Phys. Reo. D 13 3225 
Fischer A E and Wolf J A 1975 J. Diff. Geom. 10 277 
Gilkey P B 1973 Ado. Math. 10 344 
- 1975a Proc. Symp. Pure Math. vol. 27 (Providence, RI: American Mathematical Society) p 265 
- 1975b J. Diff. Geom. 10 601 
't Hooft G and Veltman M 1974 Ann. Inst. Henn Poincare' 20 69 
McKean H P and Singer I M 1967 J. Diff. Geom. 1 43 
van Nieuwenhuizen P and Wu C C 1977 J. Math. Phys. 18 182 
Patodi V K 1970 J. Indian Math. Soc. 34 269 
- 1971 J. Diff Geom. 5 251 
Sakai T 1971 Tohoku Math. J. 23 589 


